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ABSTRACT

The origin, history, current status and problems of Data Envelopment Analysis (DEA) on empiricalmulti-input, multi-output data are surveyed in relation to efficiency valuation, production functiondetermination and stochastic frontier estimation.
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ORIGIN

- Data Envelopment Analysis (DEA) began in generalization of the usual scientific-

engineering efficiency valuation of a single input, single output system as the ratio of the output

to input (in the same physical measure, e.g., energy) to multi-input, multi-output systems (or

organizations or production units) without known "physical" laws or the same measure for all

inputs and outputs. This was accomplished by (i) reduction of the multi-inputs and outputs to

single "virtual" inputs and outputs, (ii)replacing absolute efficiency by efficiency relative to all

members of a sample of units (called DMU's) having the same inputs and outputs, (iii)

evaluating a unit's relative efficiency as the maximum of the ratio of its virtual output to virtual

input subject to virtual outputs being less than or equal to virtual inputs for each (all) of the

DMU's.

Evidently there are infinitely many ways to construct virtual inputs and outputs. One

involves multiplying the inputs and outputs by non-negative "virtual multipliers" and adding to

get a single virtual input or output. Another is raising them to non-negative powers and

multiplying them together to get a virtual input or output. Out of (iii), the dual mathematical

programming problem arising in the first way (Chames, et al. 1978) reproduces (and

generalizes) M. Farrell's efficiency evaluation (Farrell 1957) based on a "production possibility

set" consisting of the conical hull of the input-output vectors of the sample points. The

economic efficient production function is then a piecewise linear function based on the efficient

DMU's inputs and outputs. The second "multiplicative" way (Charnes et al. 1981, 1983) leads

to piece-wise Cobb-Douglas functions.

ECONOMIC PRODUCTION FUNCTIONS

Farrell, working rom the production fuiAtiUlx side, thought he had to assume constant

returns to scale to obtain his (single output) results. Others like R. Shepard thought a constant

elasticity assumption was needed to get log-linear (or Cobb-Douglas) results. Coming from
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the "valuation" side via the dual mathematical programming problem to the "production

function" or "DEA" side, Charnes et al. (1978, 1981, 1983) showed that neither assumption

was necessary and that piece-wise constancy would hold for returns to scale respectively

elasticity Ln the efficient economic "empirical" production function based on sample data.

In Charnes et al. (1985a), exploring the production function side, it was shown that all

(and more) "models" for testing the efficiency of DMU's were the Charnes-Cooper test (see

Chames and Cooper 1961 and Ben-Israel et al. 1977) for multi-criteria ("goal programming")

optimality here specialized to "Pareto-Koopmans efficiency" relative to the specified production

possibility sets. These involve envelopment of the inputs from below and the outputs from

above, hence the name Data Envelopment Analysis (DEA) for all "models" of such efficiency

type.

The first way started with the "CCR ratio" form:

max TIT yd4T x, with TT yj/T xj < 1, T1, t 0, j = 1,...,n (1)

where T =(YjYsj)x(xj...Xmj),

are the output respectively input vectors of DMUj assumed positive and (x., yo) is the pair for

DMUo, one of the DMU's.

To eliminate false technical efficiency determinations (recognized by Farrell) stemming

from optimal entries of T or 4, being zero, it was immediately replaced by the non-

Archimedean CCR form:

max 1|T ygtT xo with T T yJ T xj _ I, 11T/tT x. > r eT (2)

hT/ T x i m a eT, j = oo...nsn

where e is a non-Archimedean infinitesimal and the eTare vectors of ones.
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Using the Charnes-Cooper transformation (3)

,T , ~ t=( 4T xd

The equivalent dual linear programs are:

CCR max tT Y. with UT x_ = 1, jtTy - Tx<0,tT>e eT uT> eT (4.1)

DEA min 0- e eTs+- eT s-withY) - s =Yo,0Xo- XX- s-0 (4.2)

and X, s , s- 2t 0 where Y = [Y 1 ..... Yn], X = [x 1.....Xn]

To be noted is that Fare-Hunsaker (Management Science February 1986) present them

erroneously with erroneous conclusions and all examples erroneously solved. (See Chames et

al 1987.)

Computation is done on the DEA side. No non-Archimedean quantities need be used,

see Charnes and Cooper (1961), also I. Ali (University of Massachusetts, College of

Business), J. Stutz (University of Miami, Quantitative Management department) and DEA

software of the Center for Cybernetic Studies. See also Charnes et al (1986) for a much more

complicated Archimedean approach using multiple linear programs for each efficiency

determination.

Also in Charnes et al (1985a) is a most useful DEA model, today called the "additive"

model

min -eT s+ - eT s- with YX - s+ = yo, -XX - s- = Xo (5)

eT)X = 1 and X, s+, s- _0

Interestingly, by taking logs of the virtual input-output vectors in the multiplicative model, it

reduces to this form.
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To insure that the efficiency determined in the additive model is independent of the units

of measurement of the inputs and outputs, the s and s- in (5) can be replaced by r, 9' with

si = Sr+IYr o and S'; = sdxi o, r = ,... s, i = 1 .... m. This also improves numerical stability in

the calculations.

To allow for the important possibilities of thresholds on possible inputs and ceilings on

possible outputs, the "extended additive" model, see Charnes et al (1987a), puts individual

bounds on the DEA side "slacks" which do not require additional rows of constraints in usual

LP software.

In all the above models, each inefficient DMU determination provides it with a "facet"

of similar efficient DMU's which is the convex hull of the DMU's with zero "reduced costs" in

an optimal basic simplex tableau for the inefficient DMU problem. These facets are the pieces

of the empirical efficient production function on which the function is linear (log-linear in the

multiplicative case). The union of the input sets of the facets, however, is often not that of the

de'sired input set for the production possibility set. It is an open problem to extend the function

to all of this set i.e. how best to estimate an approximation to what a corresponding efficient

output to each input therein might be.

EFFICIENCY VALUATION

Every DEA analysis involves suitable selection of inputs and outputs to assure a

reasonable production function. Also required are sufficient sample data. Sometimes proper

inputs-outputs or sample data are unavailable. Sometimes the objective is only to determine a

single (or few) "most" efficient DMU.

For example, Thompson & Thrall (1986) determined Waxahachie, Texas to be the

"most efficient" site for the Super Collider of six possible locations.
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Starting with 4 inputs, 4 outputs, 6 DMU's and employing the CCR ratio model, 5

DMU's were efficient. By placing additional restrictions on pairs of virtual multipliers (called

"assurance regions") i.e. by requiring that the relative valuations of certain inputs or outputs

were in specified ranges, their new DEA model recognized only one DMU, Waxahachie, to be

efficient. This means, however, that the corresponding efficient production function so

determined consists only of all positive multiples of the Waxahachie input-output vector.

The restrictions on the virtual multipliers placed them in cones which were the

intersection of half-spaces with the non-negative orthant. Working with the Pareto-optimality

or multi-criteria (or"dominance") DEA basis and the dual convex programming forms of Ben-

Israel et al (1971) with one side variables in a closed convex cone and the dual side variables in

the (negative) polar cone, Charnes et al (1987b) generalized the CCR ratio model of (1) to a

"cone-ratio" model which with trivial extension includes all assurance region embellishments

and which does not require the cones to be given as intersections of half-spaces.

Trying to determine a more objective measure of managerial performance of bank

managers from Call report data in D. B. Sun's Ph.D. thesis, the CCR ratio form rated two

notoriously inefficient banks (in particular years) as efficient (see Chames et al 1988). A cone-

ratio model with virtual multiplier cones as die conical hull of the CCR optimal virtual

multipliers of 3 banks unanimously top rated by bank experts was essayed. It correctly rated

the notorious ones as inefficient.

In this "sum" form, computation is reduced to the old CCR computation with input-

output matrix multiplied by the matrix of the old optimal virtual multipliers of the selected top

rated DMU's. Thus no new major software is required. All "intersection" form cones for

assurance regions can be transformed by a matrix multiplication into "sum" form. From sum

to intersection form, the half-spaces are often more complicated than assurance regions (see

Charnes et al 1989).



STOCHASTIC ASPECTS OF DEA

Every DEA analysis involves sample data of inputs and outputs which are converted by

definite mathematical operations into other quantities. By definition such quantifies are

"statistics." Therefore every DEA "model" is a stochastic model. Since, however, the

distribution functions of managerial performance at the different DMU's is unknown we lack

appropriate statistical theory for our real statistical structures. Development of such theory and

appropriate computation is a major task for DEA research.

The current state of progress is perhaps best evaluated in Jati Sengupta's outstanding

1989 monograph. Efficiency Analysis by Production Frontiers: The Non-Parametric

Approach which surveys and develops some DEA models in relation to past and current

econometric concepts. These "risk" elaborations (i.e. known statistical distributions) are

almost entirely for single output situations and fail to consider appropriately the "waste"

resident in inefficient "uncertain" managerial performance.

At a minimum, since efficient production function pieces have numbers of parameters

equal to the sum of the number of inputs plus outputs, one should have at least 3 times more

DMU's than this sum. Practically this has been accomplished in real studies with DMU

observations over multiple time periods by "window analysis." (See Charnes et al 1985b.)

There a DMU in each different period of a "window" of periods is treated as if it were a

different DMU. The same DMU in say three successive periods is treated as three DMU's,

thus tripling the number of DMU's in the sample window. Then the window is moved ahead

one period from the old start and an analysis is done on the new window, and so forth. From

the pattern of, say, efficiency scores for each particular DMU a good deal of practical

information on stochastic variability is at hand. E.g. a drastic change in the score for a real

DMU at a particular time-period across the windows is a strong signal that something unusual

was happening in that DMU at that time period which should be investigated.

Again, taking the median of the scores through the windows at each time period for a

DMU gives a reasonable temporal estimate of the efficiency performance of the DMU. The
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totality for all DMU's gives then the temporal pattern of efficiency performance of them all. It

goes without saying that there is as yet no time series theory developed for such constructs.

Another useful tool is the "envelopment map", a matrix (aij) which records the number of times

DMUj is a facet generator for DMUi . By summing the columns one can have instant

determination of which DMU's are most (or least) consistently efficient.

These window analysis techniques can also be applied to other quantities than

efficiency scores e.g., rates of change of a particular output with respect to a particular input,

which would be important in specification of and temporal analysis of the relative effectiveness

of the different DMU's for this output with this input.

Again, only pigce of the efficient empirical production function are determined and

these, stochastically, with robustness corresponding to the number of DMU's enveloped by the

associated facet. As mentioned, additional means for production function estimation across at

least the whole desired production possibility set domain (of inputs) are important to determine.

Despite these challenging research problems, DEA has proved itself as a powerful tool

for investigation of real managerial or production situations and with the most unusual feature

of developing assessments applicable to the individual productive units instead of averages

across the mass which are in error for every individual.

)
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